排列组合算法:排列组合算法真厉害,傻瓜都能学

 2021-07-09 8:00    77  

作者排列组合算法:枕边书来源:://zhenbianshu.github.io/2019/01/charming_alg_permutation_and_combination.html需求最近工作中碰到一个需求:我们的数据表有多个维度,任意多个维度组合后进行 group by 可能会产生一些”奇妙”的反应,由于不确定怎么组合,就需要将所有的组合都列出来进行尝试。

排列组合算法:排列组合算法真厉害,傻瓜都能学会

抽象一下就是从一个集合中取出任意元素排列组合算法,形成唯一的组合。如 [a,b,c] 可组合为 [a]、[b]、[c]、[ab]、[bc]、[ac]、[abc]。

排列组合算法:排列组合算法真厉害,傻瓜都能学会

要求如下排列组合算法:

排列组合算法:排列组合算法真厉害,傻瓜都能学会

组合内的元素数大于 0 小于等于 数组大小;组合内不能有重复元素,如 [aab] 是不符合要求的组合;组合内元素的位置随意,即 [ab] 和 [ba] 视为同一种组合;看到这里,就应该想到高中所学习的排列组合了,同样是从集合中取出元素形成一个另一个集合,如果集合内元素位置随意,就是组合,从 b 个元素中取 a 个元素的组合有 种。而如果要求元素顺序不同也视为不同集合的话,就是排列,从 m 个元素取 n 个元素的排列有 种。

排列组合算法:排列组合算法真厉害,傻瓜都能学会

我遇到的这个需求就是典型的组合,用公式来表示就是从元素个数为 n 的集合中列出 种组合。

排列组合算法:排列组合算法真厉害,傻瓜都能学会

文中算法用Java实现。

从排列到组合-穷举对于这种需求,首先想到的当然是穷举。由于排列的要求较少,实现更简单一些,如果我先找出所有排列,再剔除由于位置不同而重复的元素,即可实现需求。假设需要从 [A B C D E] 五个元素中取出所有组合,那么我们先找出所有元素的全排列,然后再将类似 [A B] 和 [B A] 两种集合去重即可。

我们又知道 ,那么我们先考虑一种情况 ,假设是 ,从 5 个元素中选出三个进行全排列。

被选取的三个元素,每一个都可以是 ABCDE 之一,然后再排除掉形成的集合中有重复元素的,就是 5 选 3 的全排列了。

代码是这样:

对于结果组合的排重,我借用了 Java 中 HashSet 的两个特性:

元素唯一性,选取三个元素放到 Set 内,重复的会被过滤掉,那么就可以通过集合的大小来判断是否有重复元素了,

元素无序性,Set[A B] 和 Set[B A] 都会被表示成 Set[A B]。另外又由于元素唯一性,被同时表示为 Set[A B] 的多个集合只会保留一个,这样就可以帮助将全排列转为组合。可以注意得到,上面程序中 count 参数是写死的,如果需要取出 4 个元素的话就需要四层循环嵌套了,如果取的元素个取是可变的话,普通的编码方式就不适合了。

注: 可变层数的循环可以用 递归 来实现。

从排列到组合-分治

穷举毕竟太过暴力,我们来通过分治思想来重新考虑一下这个问题:

分治思想

分治的思想总的来说就是”大事化小,小事化了”,它将复杂的问题往简单划分,直到划分为可直接解决的问题,再从这个直接可以解决的问题向上聚合,最后解决问题。

从 M 个元素中取出 N 个元素整个问题很复杂,用分治思想就可以理解为:

首先,如果我们已经从 M 中元素取出了一个元素,那么集合中还剩下 M-1 个,需要取的元素就剩下 N-1 个。还不好解决的话,我们假设又从 M-1 中取出了一个元素,集合中还剩下 M-2 个,需要取的元素只剩下 N-2 个。直到我们可能取了有 M-N+1 次,需要取的元素只剩下一个了,再从剩余集合中取,就是一个简单问题了,很简单,取法有 M-N+1 种。如果我们解决了这个问题,已经取完最后一次了产生了 M-N+1 种临时集合,再考虑从 M-N+2 个元素中取一个元素呢,又有 M-N+2 种可能。将这些可能聚合到一块,直到取到了 N 个元素,这个问题也就解决了。

还是从 5 个元素中取 3 个元素的示例:

从 5 个元素中取 3 个元素是一个复杂问题,为了简化它,我们认为已经取出了一个元素,还要再从剩余的 4 个元素中取出 2 个,求解公式为:。从 4 个元素中取出 2 个依旧不易解决,那我们再假设又取出了一个元素,接下来的问题是如何从 3 个元素中取一个,公式为 。从 3 个元素中取 1 个已经是个简单问题了,有三种可能,再向上追溯,与四取一、五取一的可能性做乘,从而解决这个问题。代码实现

用代码实现如下:

其实就是 递归。

直击本质-位运算

从元素的全排列找全组合,比穷举略好,但还不是最好的方法,毕竟它”绕了一次道”。

很多算法都能通过位运算巧秒地解决,其优势主要有两点:一者位运算在计算机中执行效率超高,再者由于位运算语义简单,算法大多直指本质。

组合算法也能通过位运算实现。

思想

再次考虑全组合的需求,从 M 个元素中取任意个元素形成组合,组合内元素不能重复、元素位置无关。

之前的方法都是从结果组合是否满足要求来考虑问题,考虑组合是否有重复元素、是否已有同样的组合等条件。如果换种思路,从待选元素上来考虑呢?

对于每个元素来说,它的状态就简单得多了,要么被放进组合,要么不放进组合。每个元素都有这么两种状态。如果从 5 个元素中任意取 N 个元素形成组合的话,用二进制位来表示每个元素是否被放到组合里,就是:

看到这里,应该就非常清楚了吧,每种组合都可以拆解为 N 个二进制位的表达形式,而每个二进制组合同时代表着一个十进制数字,所以每个十进制数字都就能代表着一种组合。

十进制数字的数目我们很简单就能算出来,从00000... 到 11111... 一共有 种,排除掉全都不被放进组合这种可能,结果有种。

代码实现

下面是 Java 代码的实现:

小结排列和组合算法在实际应用中很常见,而且他们的实现方法也非常具有参考意义。总的来说:排列用递归、组合用位运算。

本文标签:算法

原文链接:https://www.xgfox.com/kfbc/688.html

本文版权:如无特别标注,本站文章均为原创。